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Abstract: The active control of stormwater systems is a potential solution to increased street 
flooding in low-lying, low-relief coastal cities due to climate change and accompanying sea 
level rise. Model predictive control (MPC) has been shown to be a successful control strategy 
generally and as well as for managing urban drainage specifically. This research describes 
and demonstrates the implementation of MPC for urban drainage systems using open 
source software (Python and The United States Environmental Protection Agency (EPA) 
Storm Water Management Model (SWMM5). The system was demonstrated using a 
simplified use case in which an actively-controlled outlet of a detention pond is simulated. 
The control of the pond’s outlet influences the flood risk of a downstream node. For each 
step in the SWMM5 model, a series of policies for controlling the outlet are evaluated. The 
best policy is then selected using an evolutionary algorithm. The policies are evaluated 
against an objective function that penalizes primarily flooding and secondarily deviation of 
the detention pond level from a target level. Freely available Python libraries provide the key 
functionality for the MPC workflow: step-by-step running of the SWMM5 simulation, 
evolutionary algorithm implementation, and leveraging parallel computing. For perspective, 
the MPC results were compared to results from a rule-based approach and a scenario with 
no active control. The MPC approach produced a control policy that largely eliminated 
flooding (unlike the scenario with no active control) and maintained the detention pond’s 
water level closer to a target level (unlike the rule-based approach). 
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1. INTRODUCTION 
Stress on stormwater systems will likely increase as warmer global temperatures are 
predicted to cause more intense storm events on average (Berggren et al., 2012). At the 
same time, the effectiveness of coastal cities' stormwater systems will likely decrease due to 
sea level rise which reduces the already limited elevation head needed to drain stormwater 
from streets to receiving bodies. Since significant changes to existing stormwater 
infrastructure in coastal cities is often cost prohibitive, other options are needed to increase 
its effectiveness. An option for increasing the effectiveness of stormwater infrastructure is to 
actively manage the existing stormwater infrastructure, making it a “smart” system (Kerkez et 
al., 2016). This approach does not increase the actual capacity of stormwater infrastructure, 
but rather more efficiently uses the existing infrastructure, increasing its effective capacity. 
An example of active management of stormwater infrastructure would be the use of an 
automated valve at the outlet of a detention basin which can be opened or closed based on 
conditions and forecasts.  



 
 
 The effective control the actuators in a stormwater system can have a large impact on 

the system’s ability to achieve its objective (e.g., minimize flooding). One approach to 
determining the optimum control policy for a system (i.e., which actuators should change, 
when to change them, and to what setting) is model predictive control (MPC). MPC has been 
used effectively in urban drainage scenarios by Gelormino and Ricker (1994). The non-linear 
behaviour of the urban drainage system, especially in coastal environments where backwater 
effects have to be considered, makes optimization difficult. These authors therefore 
converted the system into a linear approximation greatly simplifying the selection of the 
optimum control policy.  
 Another implementation of MPC was done by Heusch and Ostrowski (2011). Their 

approach used the United States Environmental Protection Agency’s (EPA) Storm water 
Management Model version 5 (SWMM5) a public domain and widely used distributed 
dynamic rainfall-runoff model. Heusch and Ostrowski used SWMM5 to simulate the non-
linear dynamics of their urban drainage system as an “opaque” model meaning that the 
control policies were evaluated by the model without considering the mathematical form of 
the governing equations. This approach precludes the possibility of guaranteed optimality (a 
“practical optimum” can be found using a metaheuristic such as an evolutionary algorithm), 
but maintains the non-linear dynamics of the system. 
 Although Heusch and Ostrowski (2011) developed software that implements MPC 

with SWMM5, there were some drawbacks to their approach including sustainability and 
availability of the software which was closed-source and is no longer available. The main 
objective of this study was to create an open-source implementation of MPC for SWMM5. An 
additional objective was to leverage parallel computing since a computationally-expensive 
metaheuristic is needed.  To accomplish these objectives, the open-source Python 
programming language was used in conjunction with SWMM5. To evaluate the MPC 
implementation, it was applied to a simplified use case. The MPC results were compared to 
the results from two other scenarios applied to the same use case: a rules-based approach 
and a scenario with no active control. The remainder of this abstract describes the methods 
used to implement the open-source MPC and the results of the evaluation. Finally a brief 
conclusion is given.  

2. Methods 
 
2.1 MPC overview 
MPC consists of the following components: 1) 
information from the system, 2) a process model 
which accepts input from the system and is used 
to simulate the effect of a given control policy, 
and 3) an optimization routine to determine the 
optimum control policy. In MPC the optimization 
routine is performed at each control time step. 
For this routine: 1) system states are read from 
the system, 2) a series of control policies is 
evaluated, 3) the best control policy is selected, 
and 4) the best control policy is implemented. 
Although the best control policy is obtained for the 
entire control horizon, only the first step in the control policy is used since the procedure 
occurs at every control time step.  

Figure 1. MPC workflow 
 



 
 
2.2 MPC Implementation for SWMM5 using Python 
The design of our MPC implementation for SWMM5 using the Python programming language 
used three main Python libraries: pyswmm (https://github.com/OpenWaterAnalytics/ 
pyswmm), Distributed Evolutionary Algorithms for Python (DEAP) (https://github.com/DEAP/ 
deap), and Scalable COncurrent Operations in Python (SCOOP) (https://github.com/soravux/ 
scoop). The pyswmm library provides a Python interface to the SWMM5 model which is 
written in the C programming language. Through pyswmm, a SWMM5 model can be run 
step-by-step. This is a critical functionality for MPC since the best control policy needs to be 
found at each control time step. The DEAP library is used to select the best control policy 
using an evolutionary algorithm. The SCOOP library provides functionality for parallelizing 
the evolutionary algorithm execution. 
 The Python MPC workflow is shown in Figure 1. For each control time step, the 

system states are read from "reality". In our case we are simulating "reality" with a SWMM5 
model, termed "reality model" in the figure. The system states that are read from the "reality 
model" are the heads at each node in the system and the flows at each link. Next these 
states are written to another SWMM5 model 
the "process model" in the figure. The DEAP 
library uses an evolutionary algorithm to 
select the practically optimum policy. To do 
this, many simulation runs of the process 
model are executed (one for each control 
policy) which is computationally expensive. 
Since the model runs are independent, this 
process can be parallelized using the 
functionality provided by the SCOOP library. The best policy selected by the evolutionary 
algorithm is returned to the "reality model" and implemented. The next time step is then 
executed and the process repeats. 
2.3 MPC Evaluation 
A simplified use case motivated by an actual flood-prone area in 
Norfolk, Virginia USA was used to evaluate our MPC implementation. A 
simple schematic of this is shown in Figure 2. In the use case a 
detention pond (St1) is upstream from a node (J3) at which we would 
like to minimize flooding. The active control of the outlet of the pond is 
simulated using an "orifice" structure in SWMM5 which can have a 
setting between 0 (completely closed) and 1 (completely open). 
Therefore the control policies for the use case were an array of settings 
between 0 and 1, one setting for each control time step in the control 
horizon. To reduce the number of possible control settings to be 
evaluated by the computationally expensive evolutionary algorithm, the 
settings were constrained to be even tenths (e.g., 0.1, 0.2). The simulated rainfall event was 
an arbitrary synthetic event shown in Table 1. A control horizon of 6 hours was used with a 
control time step of 15 minutes. For the evolutionary algorithm, 8 generations were evaluated 
and the initial generation population was 80 individual policies.  
 In the use case, the control policies were evaluated using SWMM5 based on the 
following objective function 

𝐶𝑜𝑠𝑡 = 	𝛼𝐹)*	 + 𝛽𝐹-)	 + ϕ𝐷)*	      (1) 

Time Rainfall 
depth [mm] 

04:00 6.35 
05:00 12.7 
06:00 10.16 
07:00 6.35 
08:00 3.175 

Table 1. Rainfall data 
for evaluation use case 
 

Figure 2. Schematic of simplified use case model 
 



 
 
Where 𝐹)* is the total volume of flooding from the storage node in millions of gallons (1 gallon 
= 3.785 liter), 𝐹-)	is the total volume from the downstream node J3 in millions of gallons, and 
𝐷)* is the average deviation from a target level for the detention pond in feet (1 foot in this 
case) (1 foot = 0.3048 meter). The 𝛼, 𝛽 and 𝜙 values are weight coefficients. In our case these 
values were 100, 100, and 0.05, respectively. These values were chosen to give more weight 
to flooding than to deviation from the target level at 
the storage unit. 
 
3. Results 
The MPC implementation was successful at running 
as described above including the use of multiple 
processing cores through the SCOOP library. The 
control policy resulting from the MPC in the 
evaluation use case significantly reduced flooding at 
the downstream node compared to the passive 
control (0.01 million gallons of flooding compared to 
0.05 million gallons, respectively). Additionally, the 
MPC policy was able maintain the depth at the 
storage node closer to the target value, something 
the rules-based approach was not able to do (see 
Figure 3). 
 
4. Conclusions 
The objective of this research was to develop, implement, and evaluate an open-source 
solution for model predictive control (MPC) for the United States Environmental Protection 
Agency’s (EPA) Stormwater Management Model (SWMM). The implementation was 
accomplished using the Python programming language and key Python libraries for step-by-
step running of the model, use of evolutionary algorithms, and parallel computing. The 
system worked as designed and the resulting control policy significantly reduced flooding 
compared to a situation with no control in a simple, simulation use case. The MPC 
implementation described here can be used to perform MPC for any control in a SWMM5 
model and could be useful for understanding the potential utility of smarter stormwater 
systems. The code is accessible at https://github.com/uva-hydroinformatics/swmm_mpc. 
Future improvements may include adjusting weights in the objective function and taking 
advantage of SWMM5’s hotstart file capabilities to ensure consistency between the reality 
model and the process model. 
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Figure 3. Depth of water in detention pond 
for three control scenarios 
 


